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The energetics of a linear array of hollow or stagnant-cored vortices of finite cross- 
section in an ideal fluid is studied in this paper. The results are useful in a discussion 
of the amalgamation of vortex structures in a turbulent mixing layer. 

1. Introduction 
Baker, Saffman & Sheffield (1976) studied the structure of a linear array of two- 

dimensional hollow or stagnant-cored vortices of finite cross-section in an ideal fluid. 
They found that, for a given value of AIL2, where A is the cross-sectional area and L 
the uniform spacing between vortices, there were either two or no possible steady 
states. If AIL2 < 0.1425, there are two steady configurations but for hollow vortices 
the more deformed shape is unstable to infinitesimal two-dimensional disturbances 
that leave the centres undisplaced; whereas for stagnant-cored vortices the stability 
is unknown. If AIL2 > 0.1425 no steady configurations exist. 

They used their results to check the approximate argument of Moore & Saffman 
(1975) in estimating the maximum value of AIL2 for which a linear array of two- 
dimensional uniform vortices of finite cross-section and constant vorticity may exist. 
Moore & Saffman (1975) modelled the turbulent mixing layer by an array of two- 
dimensional uniform vortices whose area grows owing to turbulent entrainment of 
irrotational fluid until AIL2 is too large for an array to exist. They argued that the 
vorticity will then be reorganized into a new array of vortices whose spacing and cross- 
sectional area has been doubled. Thus AIL2 is reduced by a factor of two so that a 
new array is possible and the process repeats. 

Moore & Saffman (1975) did not test whether this process is consistent with the 
conservation of energy. The purpose of this paper is to study the energetics of a linear 
array of hollow or stagnant-cored vortices as a contribution to the understanding of 
flows with vorticity and to use the results to check the feasibility of the ideas of Moore 
& Saffman (1975). 

2. Calculation of energy difference 
The kinetic energy of the fluid in a region of width L, enclosing a member of the 

array and extending to infinitely large distances from the array, is infinite. However, 
the energy difference between any two study configurations which have the same 
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velocity infinitely far from the array is finite. Thus the energy difference relative to a 
chosen reference configuration provides a, convenient characterization for the ener- 
getics of the array. 

The plane vortex sheet, which is the limiting case where each vortex is pulled out 
and flattened, is the most suitable choice for our purposes as a reference configuration, 
since the results will be used to discuss the validity of a simple model of the turbulent 
mixing layer. The energy difference is determined by calculating first the energy 
difference for a finite region of width L and then taking the limit as the region is 
extended infinitely far. 

Consider the array as depicted in figure 1 of Baker et al. (1976). For symmetry 
considerations, we need only calculate the energy of the fluid in the area bounded by 
ABCDE, where A and E are to be considered points of finite distance from the x axis 
and connected by a streamline passing through both of them. In the limit when A 
and E are infinitely far from the x axis, the streamline becomes horizontal. 

The energy, E, is given by the integral of QP(V#)~  over this area, where p is the fluid 
density and 9 the velocity potential. Using standard vector analysis the integral may 
be rewritten as a line integral; therefore 

where A is a unit normal pointing outward from the area and s is the arclength along 
the boundary. Since # = 0 along A B  and BC and the normal derivative of # vanishes 
along the streamlines CD and AE,  the only contribution to this integral is along DE. 
If I' is the circulation about each vortex, 

where $E is the value of the stream function a t  E (at D ,  9 = 0 ) .  The relationship 
between $E and Y ,  the vertical position of E, can be obtained from equations (3.3) 
and (3.6) in Baker et al. (1976). When Y is large the stream function asymptotes to 

where R = P/2L and P is the perimeter of each vortex. 
For the plane vortex sheet the energy of the fluid in an area of width L and height 

2 Y ispF2Y/4L. The energy difference AEs between a steady configuration of stagnant- 
cored vortices and the plane vortex sheet has the limiting value 

where the relationship T' = 2UL has been used to express the result in terms of the 
velocity U a t  y = co and the spacing L. Note that AE, -+ 0 as R + 1 as it must, since 
that is the limit corresponding to the array approaching a plane vortex sheet; 
AE --f co as R -+ 0, the limit where the vortices become circular. The energy difference 
is shown as a function of AIL2 in figure 1. 
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FIGURE 1. The non-dimensional energy difference as a function of the non-dimensional area. 
(a;) The stagnant-cored array. (b) The hollow array. 

If the array is composed of hollow vortices, the value of Y must be shifted to com- 
pensate for the area of the vortex. The energy differences, AE,, for a fixed mass of 
fluid has the limiting value 

(5) AEH == AES + $pu2A. 

AEH is also shown as a function of AIL2 in figure 1. 
The energy difference has two values for given AIL2, AIL2 < 0.1425, corresponding 

to the two possible steady configurations. The more deformed shape has lower values 
of the energy difference. For the hollow array this is the unstable branch of the solu- 
tions. The energy difference vanishes a t  AIL2 = 0.082 for stagnant-cored vortices and 
at  AIL2 = 0.126 for hollow vortices; the vortices have total height 0.34L, 0.28L and 
total width 0.38L, 0.56~5 for the two cases, respectively. 

3. Discussion 
These results may be used to study further the ideas expressed in Moore & Saffman 

(1975) concerning the behaviour of coherent vortex structures in the turbulent mixing 
layer. We model the roll-up structures resulting from the Kelvin-Helmholtz instability 
of the plane vortex sheet by a linear array of stagnant-cored vortices. If no energy 
is lost during roll-up, the shape of each vortex is given above. Appealing to the hypo- 
thesis made by Moore & Saffman (1975) that the coherent vortices grow in size by the 
turbulent ingestion of irrotational fluid, we see that the stagnant-cored vortices lose 
energy as their area increases until the critical value AIL2 = 0,1425 is reached. 

With any further ingestion of irrotational fluid, the array can no longer exist in a 
steady state. Physically the straining field locally a t  each vortex structure has become 
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large enough to cause the vortex structures to disintegrate. We follow the suggestion 
by Moore & Saffman (1975) that a new array forms with the spacing doubled between 
vortices. If there is no loss of energy during the reorganization of the array, the para- 
meter 2nI’E/pu2L2 for the new array is half its previous value. The parameter AIL2 
has the new value 0-106 which is more than half its previous value, indicating that 
more irrotational fluid must be ingested into the stagnant cores during the reorgani- 
zation of the array. If energy is lost during the transformation of the asray, 

AIL2 > 0.106. 

This contradicts the assumption made by Moore & Saffman (1975) that the new 
vortices have an area which is the sum of the areas of two previous vortices. Aside 
from this modification, their ideas are still feasible. 

Of course, stagnant-cored vortices are not a realistic approximation to the coherent 
structures in a turbulent mixing layer, so that above arguments are only suggestive. 
More work is required in understanding the behaviour of arrays of vortex structures 
before detailed testing of these ideas is possible. 

Ferziger (1  980) of Stanford University calculated an approximate energy difference 
for an array of elliptical uniform two-dimensional vortices of constant vorticity. In 
contrast to the work presented here, he assumes that there is no loss of energy at  any 
stage of the development of the vortex structures and that only during vortex pairing 
(see Winant & Browand 1974) is irrotational fluid ingested into the vortex structures. 

Until further study is made, it is not clear which is the more important process, the 
growth in area of the vortices leading to their eventual destruction and adsorption 
into neighbouring vortices or the pairing instability leading to vortex amalgamation. 
In  fact, both processes may be equally important. 
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